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The method follows previous work in that the streamlines are constructed simulta-
neously with the solution of the gas-dynamic equations written in streamwise coor-
dinates. The flow envisaged is three dimensional, which implies that two unknown
parameters need to be chosen in order to guide each free streamline over an incre-
mental distance. In general this leads to two errors in cross-plane pressure gradients
which are reduced to zero by Newton’s method, and the calculation then proceeds
to the next downstream step and so on until the required flow field is complete.
Heat and/or mass addition is allowed if required and the ratio of specific heats is
permitted to vary with temperature.
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1. Introduction

A method of calculation has been described for supersonic two-dimensional inviscid
flow subject to a known distribution of heat addition (Broadbent 1991). In this
method, the calculation marches downstream along the streamlines, which are, of
course, initially unknown. The procedure, therefore, is to make an initial guess for the
streamline development over a very short distance and then the governing continuity
and momentum equations in streamwise coordinates can be readily solved to give
a local distribution of pressure, density and flow speed. These interim results are
then substituted into the energy equation to give a distribution of heat addition,
which will in general, however, differ from that prescribed thus forming an error
distribution. Adjustment of the streamline slopes assumed in the initial guess then
leads to a change in the error distribution and Newton’s method is used to reduce
this to zero.

In the present paper a somewhat similar method is described for three-dimensional
flow, suitable, for example, for a hypersonic intake in which heating (or cooling) may
be used. In this case, however, the elementary method of solution outlined above no
longer applies, because each free streamline requires two unknowns to fix its change
of path and hence there will in general be two errors in the gas-dynamic properties
of the associated streamtube flow. The procedure, therefore, is that each streamline
is allotted a streamtube of infinitesimal cross-section and the gas-dynamic properties
follow from a quasi-one-dimensional analysis along the streamtube. This leads to a
pressure distribution in the cross-plane that will in general not match the cross-plane
pressure gradients derived from the local streamline curvature. Since there are two
components of the cross-plane pressure gradient to be matched for each streamline
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and two unknowns fixing the path of each streamline, a consistent set of equations
can be derived which are satisfied by Newton’s method as in the earlier work.

The method is described in more detail in § 2 together with details of the streamline
geometry and the associated (infinitesimal) streamtube area. The gas dynamics is
discussed in § 3 and includes allowance for known mass addition as well as known heat
addition. With regard to the gas dynamics, the only variation from a perfect gas that
is allowed is that the ratio of specific heats, γ, is permitted to vary with temperature,
and thermal equilibrium is everywhere assumed to hold. In some applications for air
the ad hoc formula

γ(T̄ ) = 1.4 − 0.12(1 − exp(−(T̄ /1200)2)), (1.1)

has been used; it gives a reasonably close approximation over a reasonable work-
ing range. Here T̄ is the absolute temperature in kelvins. Where more complicated
chemistry is involved, a method such as that of Clarke (1991) is needed.

2. General description and streamline geometry

We assume a wholly supersonic flow without shocks along a duct which for simplicity
has a quadrilateral cross-section starting from a rectangular upstream inlet. At the
inlet cross-section the flow is in the x-direction and the sides of the rectangle are
parallel to the y- and z-directions, respectively. Since the application is to hypersonic
flight, the flow is assumed to remain broadly in the x-direction and changes in cross-
section and flow direction are gradual. The method can be adapted to cover other
cross-sections, or the presence of shocks, but for clarity the simple assumptions just
outlined are assumed throughout this paper.

The flow at any cross-section is given by that along an array of streamtubes, each
of infinitesimal cross-sectional area, that cut the cross-section at a set of points to be
determined by the calculation together with the corresponding streamline direction
and curvature. The cross-sectional area of each streamtube is allowed to vary along
the streamtube as the local flow expands or contracts. At the inlet it is convenient
to choose a rectangular array of streamlines, with Ny in the y-direction and Nz in
the z-direction making Ns in all, where Ns = NyNz (figure 1). Further assumptions
are then that there is no separation from the walls or corners and that streamlines
do not become entangled.

The method used follows the development of the flow from a plane x = x1, say,
where conditions are known, to an adjacent downstream plane x = x2; all lengths
are non-dimensional with respect to a chosen length d̄0, say.

Let

ξ =
x − x1

x2 − x1
, x = (x2 − x1)ξ + x1, (2.1)

so that ξ runs from 0 to 1 across the gap. In this gap it is assumed that the shape
of a streamline can be represented by cubics in ξ, thus

ys = a0 + a1ξ + a2ξ
2 + a3ξ

3 ≡ A(ξ),

zs = b0 + b1ξ + b2ξ
2 + b3ξ

3 ≡ B(ξ).

}
(2.2)

This representation can be expected to become increasingly accurate as the gap
(x2 − x1) is reduced. Of the eight coefficients in (2.2), six are determined at the
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Figure 1. Cross-section at an inlet in the plane x = 0, showing the streamline numbering and
part of the streamline array. At later sections, x > 0, the geometry of the duct and the array
will in general be different and non-rectangular but topologically equivalent.

plane x1 by continuity of position, direction and curvature (since a sudden change
in curvature would imply a sudden change in normal pressure gradient, which could
only occur at a shock) leaving two unknowns per streamline. The no-separation
assumption, however, constrains those streamlines running along the walls to leave
only one unknown per streamline, and for the four corner streamlines there are no
unknowns since their path is fully determined by the known shape of the walls. The
total number of unknowns is thus 2(NX − 2)(NY − 2) + 2(NX − 2) + 2(NY − 2),
or 2(NS − NX − NY ). Another way of looking at this is to note that each free
streamline needs two free parameters to adjust its intercept with the plane x = x2,
each wall streamline needs one such parameter and each corner streamline needs
none, leading again to 2(NS − NX − NY ) unknowns.

To solve for these unknowns, we first assume trial values which determine the
path of the streamline through the gap x2 − x1, from which the change in cross-
sectional area can be deduced. Since the streamtubes are infinitesimally thin, quasi-
one-dimensional equations of gas dynamics can be written to give formulae for
∂ma/∂s, ∂u/∂s and ∂p/∂s in terms of the cross-sectional area As of the streamtube
and the variables themselves, ma, u and p, where ma, u and p are non-dimensional
forms of the mass flux, the flow speed and the pressure respectively along the stream-
line; s is the corresponding streamwise coordinate. These equations can be recast as
gradients with respect to x, which is more convenient than s, and then integrated
by, for example, fourth-order Runge–Kutta to give a pressure distribution over the
plane x2. In particular, the pressure gradients in the plane x2 can be calculated, with
two components for the free streamlines and one component for each wall streamline
away from the corners. But the same pressure gradients can also be calculated from
the known curvature of the streamlines as they cross the plane x2, and the fact that
the two sets must be equal yields the necessary 2(NS − NX − NY ) equations. In
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general, the equations will not be satisfied by the trial values of the unknowns and
Newton’s method is used to converge onto a valid solution. The whole process is then
repeated between the plane x = x2 and the next adjacent downstream plane x = x3,
and so on until the solution is complete for the length of the duct.

To illustrate the choice of streamtube area for each streamtube, it is convenient
to refer to the inlet sketch in figure 1. As the flow develops from this plane x = 0
to some downstream plane x = x1, intercepts labelled A,B,C,D,E,F,G and H on
figure 1 will assume a corresponding though distorted array at this new plane. A
non-dimensional area Ax on the plane x = x1 is then assumed to be given by: for a
corner point such as O,

Ax =
(ODG)x=x1

(ODG)x=0
; (2.3)

for any other edge point such as D,

Ax =
(ODE + DAE)x=x1

(ODE + DAE)x=0
; (2.4)

for a midstream point such as E,

Ax =
(DBE + EBF + GEF + GDE)x=x1

(DBE + EBF + GEF + GDE)x=0
. (2.5)

Here (ODE + DAE)x=x1 is the sum of the area of the triangle in the plane x = x1
formed by the streamlines starting at O,D and E in the plane x = 0 and the area
of the corresponding streamlines starting from D,A and E; with equivalent notation
throughout (2.3)–(2.5). The true cross-sectional area of the streamtube As will differ
from Ax unless the streamline happens to be normal to the plane x = const., and is
given by

As = Axtx (2.6)

where tx is the x-component of the tangent vector t to the streamline at the plane
(tx = 1 at x = 0).

The tangent vector t(ξ) and the related geometric properties of the principal nor-
mal n(ξ) and the radius of curvature R(ξ) follow from the position vector of the
streamline r(ξ). There follows, with all differentials being for a constant streamline,

r(ξ) = ((x2 − x1)ξ + x1)i + A(ξ)j + B(ξ)k, (2.7)

where A(ξ), B(ξ) are given by (2.2).

t(ξ) =
dr

ds
=

dr/dξ
ds/dξ

=
dr/dξ
|dr/dξ| =

r′(ξ)
D1/2 , (2.8)

where

r′(ξ) = (x2 − x1)i + A′(ξ)j + B′(ξ)k (2.9)

from (2.7) and

D = (x2 − x1)2 + A′2(ξ) + B′2(ξ), (2.10)
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giving

t(ξ) = ((x2 − x1)i + A′(ξ)j + B′(ξ)k)D−1/2. (2.11)

Further,

n

R
=

dt

ds
=

dt/dξ
ds/dξ

=
t′(ξ)
D1/2 , (2.12)

i.e.
n

R
= D−1(A′′(ξ)j + B′′(ξ)k)

− D−2((x2 − x1)i + A′(ξ)j + B′(ξ)k)(A′(ξ)A′′(ξ) + B′(ξ)B′′(ξ)). (2.13)

Also, since |n| = 1, by definition,

1
R

=
∣∣∣∣dt

ds

∣∣∣∣, (2.14)

n =
dt/ds
|dt/ds| = R

dt

ds
=

t′(ξ)
|t′(ξ)| , (2.15)

where alternative forms are given in (2.12) and (2.15) for convenience in different
parts of a computer program.

3. Gas-dynamic relations

It is convenient to express the physical quantities non-dimensionally. Pressure p and
density ρ are given in terms of their values at the inlet:

p̄ = p̄0p, ρ̄ = ρ̄0ρ (3.1)

where a bar denotes a dimensional quantity and suffix 0 denotes inlet conditions.
Speeds are non-dimensionalized by (p̄0/ρ̄0)1/2, e.g. for the flow speed u,

ū = u(p̄0/ρ̄0)1/2. (3.2)

Allowance is made for the addition of mass (e.g. fuel mass) at a rate m̄f per unit
volume per second, and heat Q̄ per unit volume per second, with

d̄0m̄f = (p̄0/ρ̄0)1/2mf , d̄0ρ̄
1/2
0 Q̄ = p̄

3/2
0 Q. (3.3)

Non-dimensional temperatures are defined in terms of the inlet temperature T̄0 in
kelvins:

T = T̄0T, T̄f = T̄0Tf , C̄vf = C̄v0Cvf (3.4)

where the subscript ‘f’ refers to the added mass, Cv0 is the specific heat at constant
volume for the inlet flow and C̄vf is that of the added mass. The equations used
assume perfect mixing of the added mass, that the gas constant remains effectively
constant although the ratio of specific heats can vary with temperature, and that
thermal equilibrium is maintained. Thus

γ = γ(T ), T = p/ρ = pu/ma, (3.5)
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where ma = ρu is the local mass flux per unit area. The following equations of motion
may now be written (the continuity equation in (3.6), the three components of the
momentum equations in (3.7) for the direction t, (3.8) for the direction n and (3.9)
for the orthogonal direction b, and the energy equation (3.10)):

∂

∂s
(maAs) = mfAs, (3.6)

mfu + ma
∂u

∂s
= −∂p

∂s
, (3.7)

mau

R
= − ∂p

∂n
, (3.8)

∂p

∂b
= 0, (3.9)

∂

∂s

(
γ

γ − 1
puAs

)
+

1
2

∂

∂s
(mau

2As) = mf
AsCvfTf

γ0 − 1
+ QAs. (3.10)

Some manipulation leads to formulae for the streamwise gradients:

∂ma

∂s
= mf − ma

As

∂As

∂s
, (3.11)

∂u

∂s
=

(e3 + e2mfu)
(e1 − mae2)

, (3.12)

∂p

∂s
= −(e1mfu + e3ma)

(e1 − mae2)
, (3.13)

where

e1 =
1

γ − 1
+ M2 − puγ′(T )

γma(γ − 1)2
,

e2 =
u

(γ − 1)p
− u2γ′(T )

γma(γ − 1)2
,

e3 =
mfCvfTf

γp(γ0 − 1)
+

Q

γp
− u

(γ − 1)As

∂As

∂s

− mfu
2

2γp
+

uγ′(T )
γ(γ − 1)

(
pu

ma

)(
1
As

∂As

∂s
− mf

ma

)
,




(3.14)

and M is the local Mach number, i.e. M = u/(γp/ρ)1/2. Along a streamline, however,
ds = dx/tx so that equations (3.11)–(3.13) may be written(

dma

dx

)
s

=
mf

tx
− ma

As

(
dAs

dx

)
s
, (3.15)(

du
dx

)
s

=
e3 + e2mfu

tx(e1 − mae2)
, (3.16)(

dp
dx

)
s

= −(e1mfu + e3ma)
tx(e1 − mae2)

, (3.17)
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where the suffix ‘s’ denotes that a streamline is being followed, where e1, e2 and e3
are given by (3.14) and in e3

1
As

∂As

∂s
≡ tx

As

(
dAs

dx

)
s
. (3.18)

The equations (3.15)–(3.17) with (3.14) and (3.18) can now be integrated by the
fourth-order Runge–Kutta procedure over the range x = x1 to x2 as long as the
added quantities mf and Q are known. To do this requires the streamtube area to
be known as a function of x. Equations (2.3)–(2.5) show how Ax can be calculated
at any plane x = constant in terms of triangles with apexes given by (2.2) in terms
of ξ. Since the area of a triangle, At, say, is given by

At = ((st − "1)(st − "2)(st − "3)st)1/2, (3.19)

where "1, "2 and "3 are the lengths of the sides and

st = 1
2("1 + "2 + "3), (3.20)

it follows that Ax can be expressed in terms of ξ or x if required. Alternatively, if
x2 − x1 is sufficiently small it may be good enough to evaluate Ax (or As) at x = x1
and x = x2 and use quadratic interpolation.

Once equations (3.15)–(3.17) have been integrated along the streamlines from x =
x1 to x = x2, the pressure is known at all the streamline intercepts with the plane x2.
The pressure gradient is also known at the same points, from the three orthogonal
components ∂p/∂s (known from (3.17) with dx = txds) ∂p/∂n (from (3.8)) and
∂p/db = 0 (from (3.9)). If we now consider the plane x = x2 to contain some
distorted form of figure 1 with the same lettering, the pressure gradient at E, say,
may be written ∇pE and the component in any direction q is q · ∇pE. In this way
we can obtain the pressure gradient along DE at both D and E, and hence the mean
value, and similarly along EF to give finally a mean pressure gradient along the path
DEF (which will in general not be a straight line). This must equal the pressure
difference pF − p0 divided by the same path length (DE + EF) thus providing one of
the 2(Ns − Nx − Ny) equations referred to in § 2. A second equation centred on the
point E follows from the path BEG, and by applying the same procedure throughout
the mesh (with appropriate adjustment for wall and corner points as noted in § 2)
the complete set of equations is obtained. They may be written

fi(v1, . . . , vn) = Ei = 0, i = 1, . . . , n, (3.21)

where n = 2(NS − NX − NY ), v1, . . . , vn are the unknown coefficients a3, b3 of
equation (2.2) for each streamline (with appropriate adjustments for the wall and
corner streamlines) and Ei denotes the set of errors.

The trial set v1i will in general lead to a non-zero set Ei, which will clearly be
changed in a nonlinear manner by changes in vi. Newton’s method has, however,
been found to work well in practice, although as the solutions progress along the
duct it is advisable to use quadratic extrapolation to estimate each new set of trial
values vi.

It may be expected that the governing equations will be singular as the Mach
number M → 1. In fact, the singularity appears in the denominator of the right-
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hand sides of (3.16) and (3.17), where from (3.14) there follows

e1 − mae2 =
1

γ − 1
+ M2 − puγ′(T )

γma(γ − 1)2
− mau

(γ − 1)p
+

u2γ′(T )
γ(γ − 1)2

. (3.22)

Then, since mau/p = γM2, (3.22) becomes

e1 − mae2 =
1

γ − 1

(
1 − M2 +

γ′(T )
γ(γ − 1)

pu

ma
(γM2 − 1)

)
. (3.23)

It follows that if γ′(T ) = 0, (3.16) and (3.17) are singular as M → 1, but if γ′(T ) �=
0 the singularity will be shifted slightly, and since γ′(T ) is typically negative the
singularity will occur at a Mach number slightly less than one. This singularity
should never arise in practice in applications of the type discussed in this paper,
since any approach to transonic conditions would almost certainly lead to shock
formation, which has been specifically excluded.
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